
[Shesashaayee, 1(4): June, 2014] ISSN 2348 – 8034

 (C) Global Journal Of Engineering Science And Researches

[16-19]

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES

Aspect Oriented Design Languages- An Analysis
Dr.Ananthi Shesashaayee 1, Roby Jose*2
1 Research Supervisor, 2 Research Scholar

PG & Research Department of Computer Science and Applications

Quaid E Millath College for Women, Chennai

ananthy.research@gmail.com, roby.research@gmail.com

ABSTRACT
 Aspect oriented software development is an emerging software development technology that seeks new

modularizations of software systems, in computing. Today typical enterprise and internet applications have to

tackle “concerns” like security, transactional behavior, logging et al. Many important concerns often crosscut

several objects and classes of object oriented systems. AOSD is a favorable model to promote improved

separation of concerns, leading to the production of software systems that are easily maintainable. Nevertheless

implementation wise AOSD has made remarkable progress and number of efficient technologies has been

developed, but there is no satisfactory design solution for AOSD. This position paper presents an analysis of the

design languages for aspect oriented programming paradigm.

Keywords: Aspect Oriented Software development (AOSD), Aspect Oriented Design Language (AODL),

Design language, Modeling Language.

I. INTRODUCTION
 Aspect-Oriented Software Development(AOSD) is a

programming paradigm that overcomes the limitations

of Object- Orientation (Programming) providing more

suitable abstractions for modularizing crosscutting

concerns[1,2] that cannot be decomposed from the rest

of the software artifacts. Many important concerns

crosscut several objects and classes of object-oriented

systems. AOSD is a favorable paradigm to promote

improved separation of concerns. Aspect Oriented

Software Development (AOSD) is an approach where

the basic development activities are performed starting

from the assumption that the system will be

implemented with an Aspect Oriented Programming

(AOP) language. AOP allows the modular

implementation of crosscutting concerns-concerns

whose implementation is scattered throughout system

modules. AOSD deals with modularity problems that

are not handled well by other approaches including

structured programming and object oriented

programming. Typical enterprise and internet

applications today have to address “concerns” like

security, transactional behavior, logging et al. It is

observed that object oriented abstractions currently are

unable to capture all concerns in a software system.

Many key concerns often crosscut several objects and

classes of object oriented systems. The basic

abstractions of object oriented software development

are classes, objects and attributes. These abstractions

however sometimes may not be acceptable for

separating special concerns. AOSD is a favorable

model to support improved separation of concerns,

leading to the production of software systems that are

easily maintainable. AOSD has been proposed as a

technique for improving separation of concerns in the

edifice of OO software and supporting improved

usability and ease of evolution. So Aspect Orientation

complements, not replaces Object Orientation. AOSD

uses aspects as a new abstraction and provides a new

mechanism for composing aspects and components.

AOP refurbish modularity by developing the cross-

cutting concerns, or aspects, in isolation and then

combining them with other modules using declarative

or programmatic mechanisms that are modular. That

is, the points of intersection are defined once, in one

place, making them easy to understand and maintain.

The other modules require no modifications to be

advised by the aspects. This "intersection" process,

sometimes called weaving, can occur at build or run

time. Aspect oriented programming (AOP) addresses

these problems at coding level as can be found e.g. in

Aspect[17] and offers low-level support for separation

of concerns at the design level. A lack of design

support leads to a gap between design and

implementation which worsens the desired results. To

gain the AOP benefits at earlier stages in the software

development lifecycle, similar separation capabilities

must be provided also at the design level. Since aspect

orientation is not a replacement for object orientation

the position paper is about design languages for aspect

orientation that extends Unified Modelling Language

(UML). UML is the widely accepted design language

for object Orientation.

[Shesashaayee, 1(4): June, 2014] ISSN 2348 – 8034

 (C) Global Journal Of Engineering Science And Researches

[16-19]

The rest of the paper is organized as follows. Section

2 briefly introduces AspectJ, a general aspect-oriented

programming language based on Java. Section 3 give

modelling approaches in aspect oriented software

development paradigm that extends UML. A

discussion is initiated in Section 4 based on study

about section3.The paper is concluded in Section 5.

II. ASPECT-ORIENTED

PROGRAMMING AND ASPECTJ

The works discussed in the position paper are

developed as a design notation for AspectJ. So it is

vital to mention AspectJ and the new constructs

introduced by AspectJ. AspectJ [3] is a seamless

aspect-oriented extension to Java [4] by adding some

new concepts and associated constructs. These

concepts and associated constructs are called join

points, point cut, advice, inter-type declaration, and

aspect. The aspect is the modular unit of crosscutting

implementation. Each aspect encapsulates

functionality that crosscuts other classes in a program.

An aspect can be instantiated, can contain states and

methods, and also may be specialized with sub

aspects. An aspect is combined with the classes it

crosscuts according to specifications given within the

aspect. Moreover, an aspect can use an inter-type

declaration construct to declare fields, methods, and

interface implementation declarations for classes.

Declared members may be made visible to all classes

and aspects (public intertype declaration) or only

within the aspect (private intertype declaration),

allowing one to avoid name conflicts with pre-existing

elements

A central concept in the composition of an aspect with

other classes is called a join point. A join point is a

well defined point in the execution of a program, such

as a call to a method, an access to an attribute, an

object initialization, an exception handler, etc. Sets of

join points may be represented by point cuts, implying

that such sets may crosscut the system.

An aspect can specify advice to define code that

executes when a point cut is reached. Advice is a

method-like mechanism which consists of instructions

that execute before, after, or around a point cut.

An AspectJ program can be divided into two parts:

base code which includes classes, interfaces, and other

standard Java constructs and aspect code which

implements the crosscutting concerns in the program.

Any AspectJ implementation must ensure that the base

code and aspect code run together in a properly

coordinated fashion.

III. ASPECT ORIENTED UML

MODELLING APPROACHES
3.1. Aspect Oriented Design Language by Iqbal et

al [5]

A new design language for aspects for aspects called

AODL is proposed. AODL is UMLs extension to

accommodate aspects. AODL based on AspectJ

technology introduces design notations for the main

constructs [6] of AspectJ discussed in section II. Each

notation is designed to reflect the distinctive quality of

the construct. The diagrams to design aspect and their

elements are Join Point Identification and Behavioural

diagram, Aspect Design diagram, Aspect-Class Static

Diagram and Aspect-Class Dynamic Diagram.

3.2 The Aspect-Oriented design Modelling

(AODM) by Stein et al [7]

UML diagrams such as class diagram, sequence

diagram and state charts are used to design

AODM.AODM presents Join Point Designation

Diagrams to represent conceptual model of point cuts.

Static, dynamic, structural and behavioural models

helped in selecting join points. This approach

generated code from design models but it presented no

means to represent weaving process with the base

modules.

3.3 The Theme/UML approach by Clarke et al [8]

This approach uses system themes to represent

crosscutting and non-crosscutting concerns. Themes

are modelled as independent modules and their

structures and behaviour are modelled using UML

diagrams. Even though weaving process in Theme/

UML approach is carried out by template parameter

instantiation the problem with this approach was

complexity which made it difficult for traditional

UML designers to learn this approach

3.4 AOSD with Use Cases by Jacobson et al [9]

AOSD approach separates cross cutting concerns from

system requirements in the form of use case slices. The

structural and behavioural properties are modelled

with the help of class diagrams and sequence

diagrams. AOSD also has no support for modelling

weaving process.

3.5 A UML notation for AOSD by Pawlak et al [10]

The design notations presented by Pawlak et al were

extensions of UML for modelling aspects and their

related point cuts. This approach could design some

[Shesashaayee, 1(4): June, 2014] ISSN 2348 – 8034

 (C) Global Journal Of Engineering Science And Researches

[16-19]

efficiency related crosscutting concerns such as

security, fault tolerance and others. Structural

properties were taken care of by static models whereas

there was no support for behavioural properties. For

designing the weaving process also there was no

support in this model.

3.6 The AOSD profile by Aldawud et al [11]

The AOSD profile with UML-compliant design

notations represented and designed aspects and their

elements. Structural and behavioral modeling were

supported by class diagrams and sequence diagrams.

AOSD profile does not provide support for modeling

weaving process.

3.7 Aspect oriented UML approach by Klein et al

[12]

Aspect oriented UML approach is based on Message

sequence charts, a standardized scenario language.

This approach designed simplified meta model for

sequence diagram using UML 2.0. Even though the

UML had the extension capability this approach

neither used this nor did it propose new notations as

well.

3.8 UML All Purpose Transformer by Ho et al [13]

The UMLAUT is a toolkit that uses aspect oriented

UML models for building specific weavers. The

UMLAUT provides the user with general purpose

operator that can be reused for different application

with specific needs. The pro with UMLAUT is that

each AO design may be developed with application

specific weaver that optimizes weaving process

expressed by UMLAUT

3.9 Aspect oriented class design model by Reddy et

al [14]

The class design model consists of set of aspect

models and primary model. The aspect models and

primary models are created to obtain incorporated

design view. A composition algorithm and

composition directives are utilized to describe the

composition approach. This approach included a

prototype tool that supported default class diagram

composition.

3.10 Aspect oriented UML modeling by Przybylek

[15]

This approach proposed an extension to UML creating

a new model called AoUML. AoUML had elements

that represent basic aspect oriented constructs such as

aspect, advice, point cut, introduction and crosscutting

dependency.

3.11 Extension to UML meta model by Sharafi et al

[16]

This extension to UML meta model captures

crosscutting concerns. This newly created Meta model

can be represented in standard XMI format. This is a

language independent description of aspects and has

the capability to support model transformations crucial

to software development and maintenance.

IV. DISCUSSION

There are a lot of aspect oriented UML modelling

approaches. The AO UML approaches falls in two

categories. The first one being the construction of

UML profiles. This does not involve any new meta

model elements. The construction of UML profiles is

based on predefined constraints, values and graphical

representations. The second category is the extension

to UML meta model. This category proposes meta

model to define aspects and its crosscutting feature.

The majority of the works are focused on structural

modelling. Also majority of the approaches did not

demonstrate modelling procedure. Moreover, a few

approaches have developed their own tool, the rest

used previously available tools.

V. CONCLUSION
Aspect-oriented software development is missing

standardized concepts in the design phase. To make

AOSD more widely accepted solutions have to be

offered for designing cross-cutting concerns. Even

though the paradigm have gone distances in terms of

providing the code support it needs to be matured to

represent concerns at the design phase. Each concern

implemented in the code should be declared in the

design stage so that aspects are traceable from

requirements through source code.

VI. REFERENCES
[1]Kiczales.G, J.Lamping, A.Mendhekar,Ch. Maeda,

Ch.Lopez, J.M. Loin .“Aspect-Oriented

Programming”. European conference on Object

Oriented Progamming(ECOOP), LNCS

1241,Springer –Verlag, Finland, June 1997

[Shesashaayee, 1(4): June, 2014] ISSN 2348 – 8034

 (C) Global Journal Of Engineering Science And Researches

[16-19]

[2] Tarr, P. et al. “N Degrees of Separation:

Multi-Dimensional Separation of

Concerns”.Proceedings of the 21st

International Conference on Software

Engineering, May 1999.

[3] The AspectJ team. The AspectJ

programming guide 2003

[4] G.Kiczales, J Lamping, A Mendhekar,

C.Lopes, J .M Loingteir, and J.Irwin, “An

Overview of AspectJ”. Proceedings of the

13th European conference on Object

Oriented Programming, pp 220-242, LNCS,

Vol 1241, Springer-Verlag, June2000

[5]Iqbal S, Allen G “Designing Aspects with

AODL”, International Journal of Software

Engineering Vol 4No:2 July 2011

[6] J Zhao,”Measuring coupling in aspect

Oriented system”. Proceedings of 10th IEEE

International Software metrics Symposium

(Metrics ’04) Chicago, USA 2004

[7] D. Stein, S. Hanenburg and R.Unland,

“A UML-based Aspect-Oriented Design

notation For AspectJ”,Aspect Oriented

Software Development(AOSD), Enschede,

The Netherlands

[8] S Clarke, E.Banniassad,”Aspect

Oriented analysis and Design: The Theme

approach”. Addison Wesley, Reading2005

[9] I. Jacobson, P.W.Ng,”Aspect Oriented

Software Development with Usecases”.

Addison Wesley, Reading 2004

[10]R.Pawlak, L.Seinturier, L. Duchien,

L.Martelli, F.Legond Aubry , G.Florin,

“Aspect Oriented Software Development

with Java Aspect components”. Aspect

Oriented Software Development. In: Filman,

R.E.,Elrad, T.Clarke, S.,Aksit,M.(eds.),

ch16,pp 343-369,2005

[11]T.Elrad,O.Aldawud,A.Bader

“Expressing Aspects using uml behavioral

and structural diagrams”. Aspect Oriented

Software Development. In: Filman,

R.E.,Elrad, T.Clarke, S.,Aksit,M.(eds.),

ch16,pp 343-369,2005

[12] Klein, Jacques, Franck Fleurey, and

Jean-Marc Jézéquel. "Weaving multiple

aspects in sequence diagrams." Transactions

on aspect-oriented software development III.

Springer Berlin Heidelberg, 2007. 167-199.

[13] Ho, Wai-Ming, et al. "A toolkit for

weaving aspect oriented UML designs."

Proceedings of the 1st international

conference on Aspect-oriented software

development. ACM, 2002.

[14] Reddy, Y. Raghu, et al. "Directives for

composing aspect-oriented design class

models." Transactions on Aspect-Oriented

Software Development I. Springer Berlin

Heidelberg, 2006. 75-105.

[15] Przybylek, Adam. "Separation of

crosscutting concerns at the design level: An

extension to the UML metamodel." Computer

Science and Information Technology, 2008.

IMCSIT 2008. International Multiconference

on. IEEE, 2008.

[16] Sharafi, Zohreh, et al. "Extending the

UML metamodel to provide support for

crosscutting concerns." Software

Engineering Research, Management and

Applications (SERA), 2010 Eighth ACIS

International Conference on. IEEE, 2010.

[17] G. Kiczales, E.Hilsdale, J.Hugunin, M

Kersten, J Palm and W. Griswold”An

overview of AspectJ” Proceedings of 15th

ECOOP” LNCS 2072, p 327-353, Springer-

Verlag, 2001

